Sains Malaysiana 53(6)(2024): 1269-1280

http://doi.org/10.17576/jsm-2024-5306-04

 

Metroxylon sagu Rottb. Fruit Flour as Potential Prebiotics for Selected Probiotics and Phytochemical Profiling of its Methanolic Extract by LC-MS/MS       

(Tepung Buah Metroxylon sagu Rottb. sebagai Potensi Prebiotik untuk Probiotik Terpilih dan Pemprofilan Fitokimia Ekstrak Metanolnya dengan LC-MS/MS)

 

REZA FADHILLA1,2 , NANCY DEWI YULIANA1,3, FERI KUSNANDAR1,3 & HARSI DEWANTARI KUSUMANINGRUM1,3,*

 

1Department of Food Science and Technology, IPB University, Bogor, Indonesia

2Department of Nutritional Science, Faculty of Health Sciences, Universitas Esa Unggul, Kota Jakarta Barat, Indonesia

3Southeast Asian Food and Agricultural Science and Technology Center – SEAFAST, IPB University, Bogor, Indonesia

 

Received: 29 December 2023/Accepted: 13 May 2024

 

Abstract

The plant of Metroxylon sago Rottb. which is found abundantly in Indonesia, Malaysia, Philippines, and Papua New Guinea, is famous as carbohydrate producing plants. The sago fruit has not been yet extensively used, although they are rich in oligosaccharides which is potential as prebiotic. Sago fruit flour was studied as growth substrate for five selected probiotics and phytochemical profile of its methanol extracts were determined. All bacteria grew well up to 24 h on the growth medium containing sago fruit flour as carbohydrate substitute. However, Lacticaseibacillus rhamnosus FNCC 0099 and Lactobacillus acidophilus FNCC 0051 showed viability stability up to 72 h, while the others were slightly decreased. The sago fruit flour contained 20.4 mg/g total sugars, 14.8 mg QE/g flavonoids, and 36.7 mg GAE/g phenolics. After extraction of the fruit flour with 80% methanol using an ultrasonicator at 55 °C at 40 kHz for 40 min, the extract was analysed for its phytochemical profiles using untargeted LC-MS/MS screening with negative ionization mode. Seven compounds categorised in three distinct groups i.e., sugar alcohol, plant glycosides and fatty acids, have been identified as having possible prebiotic activity. These include ((1xi)-1,5-anhydro-2,3,6-tris-O-(carboxymethyl)-1-methyl-4-O-methyl-D-glucitol), quercitrin, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, corchorifatty acid F, 3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl-hexopyranoside, gynocardin, and (4-methylumbelliferone)-b-D-glucopyranoside. As the sago fruit flour has been proved as potential prebiotic in this study, its extensive prebiotics activity, prebiotic index, and stability under digestive condition will be subjected for further study.

 

Keywords: Lactobacillus; Metroxylon sagu Rottb.; phytochemical profile; prebiotic; sago fruit

 

Abstrak

Tumbuhan Metroxylon sagu Rottb. yang banyak terdapat di Indonesia, Malaysia, Filipina dan Papua New Guinea, terkenal sebagai tumbuhan penghasil karbohidrat. Buah sagu masih belum digunakan secara meluas, walaupun ia kaya dengan oligosakarida yang berpotensi sebagai prebiotik. Tepung buah sagu dikaji sebagai substrat pertumbuhan untuk lima probiotik terpilih dan profil fitokimia ekstrak metanolnya telah ditentukan. Semua bakteria tumbuh dengan baik sehingga 24 jam pada medium pertumbuhan yang mengandungi tepung buah sagu sebagai pengganti karbohidrat. Walau bagaimanapun, Lacticaseibacillus rhamnosus FNCC 0099 dan Lactobacillus acidophilus FNCC 0051 menunjukkan kestabilan kebolehhidupan sehingga 72 jam, manakala yang lain menurun sedikit. Tepung buah sagu mengandungi 20.4 mg/g jumlah gula, 14.8 mg QE/g flavonoid dan 36.7 mg GAE/g fenol. Selepas pengekstrakan tepung buah dengan 80% metanol menggunakan ultrasonik pada 55 °C pada 40 kHz selama 40 minit, ekstrak dianalisis untuk profil fitokimianya menggunakan saringan LC-MS/MS yang tidak disasarkan dengan mod pengionan negatif. Tujuh sebatian yang dikategorikan dalam tiga kumpulan berbeza iaitu gula alkohol, glikosida tumbuhan dan asid lemak, telah dikenal pasti mempunyai kemungkinan aktiviti prebiotik. Ini termasuk ((1xi)-1,5-anhydro-2,3,6-tris-O-(carboxymethyl)-1-methyl-4-O-methyl-D-glucitol), quercitrin, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, corchorifatty acid F, 3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl-hexopyranoside, gynocardin dan (4-methylumbelliferone)-b-D-glucopyranoside. Oleh kerana tepung buah sagu telah dibuktikan sebagai potensi prebiotik dalam kajian ini, aktiviti prebiotik yang meluas, indeks prebiotik dan kestabilan dalam keadaan penghadaman akan tertakluk untuk kajian lebih jauh.

 

Kata kunci: Buah sagu; Lactobacillus; Metroxylon sagu Rottb.; prebiotik; profil fitokimia

 

REFERENCES

Alfaro-Galarza, O., López-Villegas, E.O., Rivero-Perez, N., Tapia-Maruri, D., Jiménez-Aparicio, A.R., Palma-Rodríguez, H.M. & Vargas-Torres, A. 2020. Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. LWT 117: 108686. https://doi.org/ 10.1016/J.LWT.2019.108686

AOAC. 2023. Official Methods of Analysis of AOAC INTERNATIONAL.

Bel-Rhlid, R., Thapa, D., Kraehenbuehl, K., Hansen, C.E. & Fischer, L. 2013. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express 3(1): 1-7. https://doi.org/10.1186/2191-0855-3-28/figures/7

Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž. & Bren, U. 2016. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7): 901. https://doi.org/10.3390/MOLECULES21070901

Calvindi, J., Syukur, M. & Nurcholis, W. 2020. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas Journal of Biological Diversity 21(6): 2420-2424. https://doi.org/10.13057/biodiv/D210612

Daud, M., Piliang, W.G., Wiryawan, K.G. & Setiyono, D.A. 2009. Pengujian secara in vitro oligosakarida dari ekstrak tepung buah rumbia (Metroxylon sago Rottb.) sebagai sumber prebiotic. Jurnal Agripet 9(2): 35-41.

de las Rivas, B., Rodríguez, H., Anguita, J. & Muñoz, R. 2019. Bacterial tannases: Classification and biochemical properties. Applied Microbiology and Biotechnology 103(2): 603-623. https://doi.org/10.1007/S00253-018-9519-Y/METRICS

Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D. & Bugaud, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany 64(6): 1451-1469. https://doi.org/10.1093/jxb/ert035

 FAO/WHO. 2006. Enhancing Developing Country Participation in FAO/WHO Scientific Advice Activities: Report of a Joint FAO/WHO Meeting, Belgrade, Serbia and Montenegro. Food & Agriculture Org.

Faraone, I., Rai, D.K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A. & Milella, L. 2019. Antioxidant, antidiabetic, and anticholinesterase activities and phytochemical profile of Azorella glabra Wedd. Plants 8(8): 265. https://doi.org/10.3390/PLANTS8080265

Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M. & Gänzle, M.G. 2015. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology 46: 272-279. https://doi.org/10.1016/J.FM.2014.08.018

Fritsch, C., Heinrich, V., Vogel, R.F. & Toelstede, S. 2016. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiology 57: 178-186. https://doi.org/10.1016/J.FM.2016.03.003

Fuguet, E., Ràfols, C., Mañé, M., Ruiz, R. & Bosch, E. 2022. Acidity constants of hydroxyl groups placed in several flavonoids: Two flavanones, two flavones and five flavonols. Talanta 253: 124096. https://doi.org/10.1016/j.talanta.2022.124096

Gao, X., Kong, J., Zhu, H., Mao, B., Cui, S. & Zhao, J. 2022. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross‐protection to improve resistance against freeze‐drying. Journal of Applied Microbiology 132(2): 802-821. https://doi.org/10.1111/JAM.15251

Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J. & Scott, K. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14(8): 491-502. https://doi.org/10.1038/nrgastro.2017.75

Hirata, A., Kishino, S., Park, S.B., Takeuchi, M., Kitamura, N. & Ogawa, J. 2015. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. Journal of Lipid Research 56(7): 1340-1350. https://doi.org/10.1194/jlr.M059444

Jovanovic-Malinovska, R., Kuzmanova, S. & Winkelhausen, E. 2015. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrasonics Sonochemistry 22: 446-453. https://doi.org/10.1016/J.ULTSONCH.2014.07.016

Kim, B.H. & Gadd, G.M. 2019. Prokaryotic Metabolism and Physiology. 2nd ed. Cambridge: Cambridge University Press. pp. 1-482. https://doi.org/10.1017/9781316761625

Klewicka, E. & Klewicki, R. 2019. In vitro fermentation of galactosyl derivatives of polyols by Lactobacillus strains. Czech J. Food Sci. 27: 65-70. https://doi.org/10.17221/176/2008-CJFS

Lamas et al. 2019

Lipinska-Zubrycka, L., Klewicki, R., Sojka, M., Bonikowski, R., Milczarek, A. & Klewicka, E. 2020. Anticandidal activity of Lactobacillus spp. in the presence of galactosyl polyols. Microbiological Research 240: 126540. https://doi.org/10.1016/J.MICRES.2020.126540

Liu, L., Zhang, C., Zhang, H., Qu, G., Li, C. & Liu, L. 2021. Biotransformation of polyphenols in apple pomace fermented by β-glucosidase-producing Lactobacillus rhamnosus L08. Foods 10(6): 1343. https://doi.org/10.3390/FOODS10061343

Lugani, Y. & Sooch, B.S. 2017. Xylitol, an emerging prebiotic: A review. International Journal of Applied Pharmaceutical and Biological Research 2(2): 67-73. https://www.academia.edu/70670025/ Xylitol_an_Emerging_Prebiotic_A_Review

Mansoori, A., Dwivedi, A., Sharma, K., Dubey, S.K., Thakur, T.K. & Kumar, A. 2022. Identification of potential inhibitors from Urginea indica metabolites against Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae receptors. Frontiers in Agronomy https://doi.org/10.3389/fagro.2022.922306

Marsh, K.B., Boldingh, H.L., Shilton, R.S. & Laing, W.A. 2009. Changes in quinic acid metabolism during fruit development in three kiwifruit species. Functional Plant Biology 36(5): 463-470. https://doi.org/10.1071/FP08240

Mohamad Naim, H., Yaakub, A.N. & Awang Hamdan, D.A. 2016. Commercialization of sago through estate plantation scheme in Sarawak: The way forward. International Journal of Agronomy 2016: 8319542. https://doi.org/10.1155/2016/8319542

Musialik, M., Kuzmicz, R., Pawlowski, T.S. & Litwinienko, G. 2009. Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. Journal of Organic Chemistry 74(7): 2699-2709. https://doi.org/10.1021/jo802716v

Naissinger da Silva, M., Tagliapietra, B.L., Flores, V. do A. & Pereira dos Santos Richards, N. S. 2021. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Current Research in Food Science 4: 320-325. https://doi.org/10.1016/j.crfs.2021.04.006

Nazhand, A., Durazzo, A., Lucarini, M., Romano, R., Mobilia, M.A., Izzo, A.A. & Santini, A. 2020. Human health-related properties of chromones: An overview. Natural Product Research 34(1): 137-152. https://doi.org/10.1080/14786419.2019.1678618

Plaza-Vinuesa, L., Hernandez-Hernandez, O., Moreno, F.J., De Las Rivas, B. & Munõz, R. 2019. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories 18(1): 1-11. https://doi.org/ 10.1186/S12934-019-1237-3/figures/4

Rodríguez-Daza, M.C., Pulido-Mateos, E.C., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y. & Roy, D. 2021. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Frontiers in Nutrition 8: 689456. https://doi.org/10.3389/fnut.2021.689456/bibtex

Santos-Buelga, C., González-Paramás, A.M., Oludemi, T., Ayuda-Durán, B. & González-Manzano, S. 2019. Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research 90: 183-257. https://doi.org/10.1016/BS.AFNR.2019.02.012

Singla, R.K., Dubey, A.K., Garg, A., Sharma, R.K., Fiorino, M., Ameen, S.M., Haddad, M.A. & Al-Hiary, M. 2019. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC INTERNATIONAL 102(5): 1397-1400. https://doi.org/10.5740/jaoacint.19-0133

Stead, D. 1994. The effect of chlorogenic, gallic and quinic acids on the growth of spoilage strains of Lactobacillus collinoides and Lactobacillus brevis. Letters in Applied Microbiology 18(2): 112-114. https://doi.org/10.1111/j.1472-765X.1994.tb00819.x

Theilmann, M.C., Goh, Y.J., Nielsen, K.F., Klaenhammer, T.R., Barrangou, R. & Hachem, M.A. 2017. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. MBio 8(6): e01421-17. https://doi.org/10.1128/mbio.01421-17

Thilakarathna, W.W., Langille, M.G. & Rupasinghe, H.V. 2018. Polyphenol-based prebiotics and synbiotics: Potential for cancer chemoprevention. Current Opinion in Food Science 20: 51-57. https://doi.org/10.1016/j.cofs.2018.02.011

Uyanga, V.A., Amevor, F.K., Liu, M., Cui, Z., Zhao, X. & Lin, H. 2021. Potential implications of citrulline and quercetin on gut functioning of monogastric animals and humans: A comprehensive review. Nutrients 13(11): 3782. https://doi.org/10.3390/nu13113782

Whiting, G.C. & Coggins, R.A. 1971. The role of quinate and shikimate in the metabolism of Lactobacilli. Antonie van Leeuwenhoek 37(1): 33-49. https://doi.org/10.1007/bf02218465

Wu, Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P.L., Wen, G. & Zhou, J. 2021. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry 348: 129083. https://doi.org/10.1016/j.foodchem.2021.129083

Xiong, H.H., Lin, S.Y., Chen, L.L., Ouyang, K.H. & Wang, W.J. 2023. The interaction between flavonoids and intestinal microbes: A review. Foods 12(2): 320. https://doi.org/10.3390/foods12020320

Xiong, R.G., Zhou, D.D., Wu, S.X., Huang, S.Y., Saimaiti, A., Yang, Z.J., Shang, A., Zhao, C.N., Gan, R.Y. & Li, H.B. 2022. Health benefits and side effects of short-chain fatty acids. Foods 11(18): 2863. https://doi.org/10.3390%2Ffoods11182863

Zebua, E.A., Silalahi, J. & Julianti, E. 2018. Hypoglicemic activity of gambier (Uncaria gambir Robx.) drinks in alloxan-induced mice. IOP Conference Series: Earth and Environmental Science 122: 012088. https://doi.org/10.1088/1755-1315/122/1/012088

 

*Corresponding author; email: h_kusumaningrum@apps.ipb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next