Sains Malaysiana 53(6)(2024): 1269-1280
http://doi.org/10.17576/jsm-2024-5306-04
Metroxylon
sagu Rottb. Fruit Flour as Potential Prebiotics for
Selected Probiotics and Phytochemical Profiling of its Methanolic Extract by
LC-MS/MS
(Tepung Buah Metroxylon
sagu Rottb. sebagai Potensi Prebiotik untuk Probiotik Terpilih dan
Pemprofilan Fitokimia Ekstrak Metanolnya dengan LC-MS/MS)
REZA FADHILLA1,2 , NANCY
DEWI YULIANA1,3, FERI KUSNANDAR1,3 & HARSI DEWANTARI
KUSUMANINGRUM1,3,*
1Department of Food Science and Technology, IPB University,
Bogor, Indonesia
2Department of Nutritional Science, Faculty of Health
Sciences, Universitas Esa Unggul, Kota Jakarta Barat, Indonesia
3Southeast Asian Food and Agricultural Science and Technology
Center – SEAFAST, IPB University, Bogor, Indonesia
Received: 29 December 2023/Accepted: 13 May 2024
Abstract
The
plant of Metroxylon sago Rottb. which is found abundantly in Indonesia,
Malaysia, Philippines, and Papua New Guinea, is famous as carbohydrate
producing plants. The sago fruit has not been yet extensively used, although
they are rich in oligosaccharides which is potential as prebiotic. Sago fruit
flour was studied as growth substrate for five selected probiotics and
phytochemical profile of its methanol extracts were determined. All bacteria
grew well up to 24 h on the growth medium containing sago fruit flour as
carbohydrate substitute. However, Lacticaseibacillus rhamnosus FNCC 0099
and Lactobacillus acidophilus FNCC 0051 showed viability stability up to
72 h, while the others were slightly decreased. The sago fruit flour contained
20.4 mg/g total sugars, 14.8 mg QE/g flavonoids, and 36.7 mg GAE/g phenolics.
After extraction of the fruit flour with 80% methanol using an ultrasonicator
at 55 °C at 40 kHz for 40 min, the extract was analysed for its phytochemical
profiles using untargeted LC-MS/MS screening with negative ionization mode. Seven
compounds categorised in three distinct groups i.e., sugar alcohol, plant
glycosides and fatty acids, have been identified as having possible prebiotic
activity. These include ((1xi)-1,5-anhydro-2,3,6-tris-O-(carboxymethyl)-1-methyl-4-O-methyl-D-glucitol), quercitrin, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, corchorifatty
acid F, 3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl-hexopyranoside, gynocardin, and (4-methylumbelliferone)-b-D-glucopyranoside. As the sago fruit
flour has been proved as potential prebiotic in this study, its extensive
prebiotics activity, prebiotic index, and stability under digestive condition
will be subjected for further study.
Keywords: Lactobacillus; Metroxylon
sagu Rottb.; phytochemical profile; prebiotic; sago fruit
Abstrak
Tumbuhan Metroxylon sagu Rottb. yang banyak terdapat di
Indonesia, Malaysia, Filipina dan Papua New Guinea, terkenal sebagai tumbuhan
penghasil karbohidrat. Buah sagu masih belum digunakan secara meluas, walaupun
ia kaya dengan oligosakarida yang berpotensi sebagai prebiotik. Tepung buah
sagu dikaji sebagai substrat pertumbuhan untuk lima probiotik terpilih dan
profil fitokimia ekstrak metanolnya telah ditentukan. Semua bakteria tumbuh
dengan baik sehingga 24 jam pada medium pertumbuhan yang mengandungi tepung
buah sagu sebagai pengganti karbohidrat. Walau bagaimanapun, Lacticaseibacillus rhamnosus FNCC 0099 dan Lactobacillus acidophilus FNCC 0051 menunjukkan
kestabilan kebolehhidupan sehingga 72 jam, manakala yang lain menurun sedikit.
Tepung buah sagu mengandungi 20.4 mg/g jumlah gula, 14.8 mg QE/g flavonoid dan
36.7 mg GAE/g fenol. Selepas pengekstrakan tepung buah dengan 80% metanol
menggunakan ultrasonik pada 55 °C pada 40 kHz selama 40 minit, ekstrak
dianalisis untuk profil fitokimianya menggunakan saringan LC-MS/MS yang tidak
disasarkan dengan mod pengionan negatif. Tujuh sebatian yang dikategorikan
dalam tiga kumpulan berbeza iaitu gula alkohol, glikosida tumbuhan dan asid
lemak, telah dikenal pasti mempunyai kemungkinan aktiviti prebiotik. Ini
termasuk ((1xi)-1,5-anhydro-2,3,6-tris-O-(carboxymethyl)-1-methyl-4-O-methyl-D-glucitol), quercitrin, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, corchorifatty
acid F, 3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl-hexopyranoside, gynocardin dan (4-methylumbelliferone)-b-D-glucopyranoside.
Oleh kerana tepung buah sagu telah dibuktikan sebagai potensi prebiotik dalam
kajian ini, aktiviti prebiotik yang meluas, indeks prebiotik dan kestabilan
dalam keadaan penghadaman akan tertakluk untuk kajian lebih jauh.
Kata kunci: Buah
sagu; Lactobacillus; Metroxylon sagu Rottb.; prebiotik; profil
fitokimia
REFERENCES
Alfaro-Galarza,
O., López-Villegas, E.O., Rivero-Perez, N., Tapia-Maruri, D., Jiménez-Aparicio,
A.R., Palma-Rodríguez, H.M. & Vargas-Torres, A. 2020. Protective effects of
the use of taro and rice starch as wall material on the viability of
encapsulated Lactobacillus paracasei subsp. Paracasei. LWT 117: 108686. https://doi.org/ 10.1016/J.LWT.2019.108686
AOAC.
2023. Official Methods of Analysis of AOAC INTERNATIONAL.
Bel-Rhlid,
R., Thapa, D., Kraehenbuehl, K., Hansen, C.E. & Fischer, L. 2013.
Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus
johnsonii NCC 533. AMB Express 3(1): 1-7.
https://doi.org/10.1186/2191-0855-3-28/figures/7
Brglez
Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž. & Bren, U.
2016. Polyphenols: Extraction methods, antioxidative action, bioavailability
and anticarcinogenic effects. Molecules 21(7): 901.
https://doi.org/10.3390/MOLECULES21070901
Calvindi,
J., Syukur, M. & Nurcholis, W. 2020. Investigation of biochemical
characters and antioxidant properties of different winged bean (Psophocarpus
tetragonolobus) genotypes grown in Indonesia. Biodiversitas Journal of
Biological Diversity 21(6): 2420-2424.
https://doi.org/10.13057/biodiv/D210612
Daud,
M., Piliang, W.G., Wiryawan, K.G. & Setiyono, D.A. 2009. Pengujian secara in
vitro oligosakarida dari ekstrak tepung buah rumbia (Metroxylon sago Rottb.) sebagai sumber prebiotic. Jurnal Agripet 9(2): 35-41.
de las Rivas, B., Rodríguez, H., Anguita,
J. & Muñoz, R. 2019. Bacterial tannases: Classification and
biochemical properties. Applied Microbiology and Biotechnology 103(2):
603-623. https://doi.org/10.1007/S00253-018-9519-Y/METRICS
Etienne,
A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D. & Bugaud, C. 2013. What
controls fleshy fruit acidity? A review of malate and citrate accumulation in
fruit cells. Journal of Experimental Botany 64(6): 1451-1469. https://doi.org/10.1093/jxb/ert035
FAO/WHO. 2006. Enhancing Developing Country
Participation in FAO/WHO Scientific Advice Activities: Report of a Joint
FAO/WHO Meeting, Belgrade, Serbia and Montenegro. Food & Agriculture Org.
Faraone,
I., Rai, D.K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A. &
Milella, L. 2019. Antioxidant, antidiabetic, and anticholinesterase activities
and phytochemical profile of Azorella glabra Wedd. Plants 8(8):
265. https://doi.org/10.3390/PLANTS8080265
Filannino,
P., Bai, Y., Di Cagno, R., Gobbetti, M. & Gänzle, M.G. 2015. Metabolism of
phenolic compounds by Lactobacillus spp. during fermentation of cherry
juice and broccoli puree. Food Microbiology 46: 272-279.
https://doi.org/10.1016/J.FM.2014.08.018
Fritsch, C., Heinrich, V., Vogel, R.F.
& Toelstede, S. 2016. Phenolic acid degradation potential and growth
behavior of lactic acid bacteria in sunflower substrates. Food Microbiology 57: 178-186. https://doi.org/10.1016/J.FM.2016.03.003
Fuguet,
E., Ràfols, C., Mañé, M., Ruiz, R. & Bosch, E. 2022. Acidity constants of
hydroxyl groups placed in several flavonoids: Two flavanones, two flavones and
five flavonols. Talanta 253: 124096.
https://doi.org/10.1016/j.talanta.2022.124096
Gao,
X., Kong, J., Zhu, H., Mao, B., Cui, S. & Zhao, J. 2022. Lactobacillus,
Bifidobacterium and Lactococcus response to environmental stress:
Mechanisms and application of cross‐protection to improve resistance
against freeze‐drying. Journal of Applied Microbiology 132(2):
802-821. https://doi.org/10.1111/JAM.15251
Gibson,
G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J.
& Scott, K. 2017. Expert consensus document: The International Scientific
Association for Probiotics and Prebiotics (ISAPP) consensus statement on the
definition and scope of prebiotics. Nature Reviews Gastroenterology &
Hepatology 14(8): 491-502. https://doi.org/10.1038/nrgastro.2017.75
Hirata, A., Kishino, S., Park, S.B.,
Takeuchi, M., Kitamura, N. & Ogawa, J. 2015. A novel unsaturated
fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus
acidophilus. Journal of Lipid Research 56(7): 1340-1350.
https://doi.org/10.1194/jlr.M059444
Jovanovic-Malinovska, R., Kuzmanova, S.
& Winkelhausen, E. 2015. Application of ultrasound for enhanced
extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrasonics
Sonochemistry 22: 446-453. https://doi.org/10.1016/J.ULTSONCH.2014.07.016
Kim, B.H. & Gadd, G.M. 2019. Prokaryotic
Metabolism and Physiology. 2nd ed. Cambridge: Cambridge University Press.
pp. 1-482. https://doi.org/10.1017/9781316761625
Klewicka,
E. & Klewicki, R. 2019. In vitro fermentation of galactosyl
derivatives of polyols by Lactobacillus strains. Czech J. Food Sci. 27: 65-70. https://doi.org/10.17221/176/2008-CJFS
Lamas et al. 2019
Lipinska-Zubrycka,
L., Klewicki, R., Sojka, M., Bonikowski, R., Milczarek, A. & Klewicka, E.
2020. Anticandidal activity of Lactobacillus spp. in the presence of
galactosyl polyols. Microbiological Research 240: 126540.
https://doi.org/10.1016/J.MICRES.2020.126540
Liu, L., Zhang, C., Zhang, H., Qu, G., Li,
C. & Liu, L. 2021. Biotransformation of polyphenols in apple pomace
fermented by β-glucosidase-producing Lactobacillus rhamnosus L08. Foods 10(6): 1343. https://doi.org/10.3390/FOODS10061343
Lugani,
Y. & Sooch, B.S. 2017. Xylitol, an emerging prebiotic: A review. International
Journal of Applied Pharmaceutical and Biological Research 2(2): 67-73.
https://www.academia.edu/70670025/ Xylitol_an_Emerging_Prebiotic_A_Review
Mansoori,
A., Dwivedi, A., Sharma, K., Dubey, S.K., Thakur, T.K. & Kumar, A. 2022.
Identification of potential inhibitors from Urginea indica metabolites
against Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae receptors. Frontiers in Agronomy https://doi.org/10.3389/fagro.2022.922306
Marsh,
K.B., Boldingh, H.L., Shilton, R.S. & Laing, W.A. 2009. Changes in quinic
acid metabolism during fruit development in three kiwifruit species. Functional
Plant Biology 36(5): 463-470. https://doi.org/10.1071/FP08240
Mohamad
Naim, H., Yaakub, A.N. & Awang Hamdan, D.A. 2016. Commercialization of sago
through estate plantation scheme in Sarawak: The way forward. International
Journal of Agronomy 2016: 8319542. https://doi.org/10.1155/2016/8319542
Musialik, M., Kuzmicz, R., Pawlowski, T.S.
& Litwinienko, G. 2009. Acidity of hydroxyl groups: An overlooked
influence on antiradical properties of flavonoids. Journal of Organic
Chemistry 74(7): 2699-2709. https://doi.org/10.1021/jo802716v
Naissinger
da Silva, M., Tagliapietra, B.L., Flores, V. do A. & Pereira dos Santos
Richards, N. S. 2021. In vitro test to evaluate survival in the
gastrointestinal tract of commercial probiotics. Current Research in Food
Science 4: 320-325. https://doi.org/10.1016/j.crfs.2021.04.006
Nazhand,
A., Durazzo, A., Lucarini, M., Romano, R., Mobilia, M.A., Izzo, A.A. &
Santini, A. 2020. Human health-related properties of chromones: An overview. Natural
Product Research 34(1): 137-152. https://doi.org/10.1080/14786419.2019.1678618
Plaza-Vinuesa, L., Hernandez-Hernandez,
O., Moreno, F.J., De Las Rivas, B. & Munõz, R. 2019. Unravelling the
diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus
plantarum WCFS1. Microbial Cell Factories 18(1): 1-11. https://doi.org/
10.1186/S12934-019-1237-3/figures/4
Rodríguez-Daza,
M.C., Pulido-Mateos, E.C., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y.
& Roy, D. 2021. Polyphenol-mediated gut microbiota modulation: Toward
prebiotics and further. Frontiers in Nutrition 8: 689456.
https://doi.org/10.3389/fnut.2021.689456/bibtex
Santos-Buelga,
C., González-Paramás, A.M., Oludemi, T., Ayuda-Durán, B. &
González-Manzano, S. 2019. Plant phenolics as functional food ingredients. Advances
in Food and Nutrition Research 90: 183-257.
https://doi.org/10.1016/BS.AFNR.2019.02.012
Singla,
R.K., Dubey, A.K., Garg, A., Sharma, R.K., Fiorino, M., Ameen, S.M., Haddad,
M.A. & Al-Hiary, M. 2019. Natural polyphenols: Chemical classification,
definition of classes, subcategories, and structures. Journal of AOAC
INTERNATIONAL 102(5): 1397-1400. https://doi.org/10.5740/jaoacint.19-0133
Stead,
D. 1994. The effect of chlorogenic, gallic and quinic acids on the growth of
spoilage strains of Lactobacillus collinoides and Lactobacillus
brevis. Letters in Applied Microbiology 18(2): 112-114.
https://doi.org/10.1111/j.1472-765X.1994.tb00819.x
Theilmann, M.C., Goh, Y.J., Nielsen, K.F.,
Klaenhammer, T.R., Barrangou, R. & Hachem, M.A. 2017. Lactobacillus
acidophilus metabolizes dietary plant glucosides and externalizes their
bioactive phytochemicals. MBio 8(6): e01421-17.
https://doi.org/10.1128/mbio.01421-17
Thilakarathna, W.W., Langille, M.G. &
Rupasinghe, H.V. 2018. Polyphenol-based prebiotics and synbiotics:
Potential for cancer chemoprevention. Current Opinion in Food Science 20: 51-57. https://doi.org/10.1016/j.cofs.2018.02.011
Uyanga, V.A., Amevor, F.K., Liu, M., Cui,
Z., Zhao, X. & Lin, H. 2021. Potential implications of citrulline
and quercetin on gut functioning of monogastric animals and humans: A
comprehensive review. Nutrients 13(11): 3782.
https://doi.org/10.3390/nu13113782
Whiting,
G.C. & Coggins, R.A. 1971. The role of quinate and shikimate in the
metabolism of Lactobacilli. Antonie van Leeuwenhoek 37(1): 33-49.
https://doi.org/10.1007/bf02218465
Wu,
Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P.L., Wen, G. & Zhou, J. 2021.
Fermentation of blueberry and blackberry juices using Lactobacillus
plantarum, Streptococcus thermophilus and Bifidobacterium bifidum:
Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry 348: 129083.
https://doi.org/10.1016/j.foodchem.2021.129083
Xiong,
H.H., Lin, S.Y., Chen, L.L., Ouyang, K.H. & Wang, W.J. 2023. The interaction
between flavonoids and intestinal microbes: A review. Foods 12(2): 320.
https://doi.org/10.3390/foods12020320
Xiong,
R.G., Zhou, D.D., Wu, S.X., Huang, S.Y., Saimaiti, A., Yang, Z.J., Shang, A.,
Zhao, C.N., Gan, R.Y. & Li, H.B. 2022. Health benefits and side effects of
short-chain fatty acids. Foods 11(18): 2863.
https://doi.org/10.3390%2Ffoods11182863
Zebua, E.A., Silalahi, J. & Julianti,
E. 2018. Hypoglicemic activity of gambier (Uncaria gambir Robx.)
drinks in alloxan-induced mice. IOP Conference Series: Earth and
Environmental Science 122: 012088.
https://doi.org/10.1088/1755-1315/122/1/012088
*Corresponding
author; email: h_kusumaningrum@apps.ipb.ac.id
|